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Figure 1: The results of the proposed approach on the unseen data.

Abstract

We propose a novel approach to weakly supervised se-
mantic segmentation, which consists of three consecutive
steps. The first two steps extract high-quality pseudo masks
from image-level annotated data, which are then used to
train a segmentation model on the third step. The presented
approach also addresses two problems in the data: class
imbalance and missing labels. Using only image-level an-
notations as supervision, our method is capable of segment-
ing various classes and complex objects. It achieves 37.34
mean IoU on the test set, placing 3rd at the LID Challenge
in the task of weakly supervised semantic segmentation.

1. Introduction
Deep learning methods have proven their efficiency in

a variety of computer vision tasks, including semantic seg-
mentation. However, their application to semantic segman-
tation typically requires large amounts of data with pixel-
level annotations. We can, however, overcome this issue
by developing weakly supervised methods that rely only on
image-level labels. Omitting usage of pixel-wise annota-
tions also provides considerable advantages. For example,
it is less expensive and less time consuming; Lin et al. [10]
calculated that collecting bounding boxes for each class is
about 15 times faster than producing a ground-truth pixel-
wise segmentation mask; collecting image-level labels is
even more time-efficient. Working with image-level anno-

tations also decreases the probability of disagreement be-
tween experts, since pixel-wise annotations tend to be less
accurate and have a higher variance among labelers.

Data: The dataset used was proposed on the LID Chal-
lenge [11]. It consists of 456,567 training images of objects
from 201 classes including background. The validation and
test sets have pixel-wise annotations, which are publicly
available only for a validation set. The images in the train
set are provided exclusively with image-level annotations.
Moreover, the data have a lot of missing labels, and are also
highly imbalanced towards three classes: ‘dog’, ‘bird’, and
‘person’.

The class ‘person’ has a large impact on other classes
in the data; it usually appears in combination with others
and often overlaps with such classes as ‘microphone’, ‘sun-
glasses’, ‘unicycle’ etc. It is thus crucial to have correct
labels for the class ’person’; however, the opposite is ob-
served in the data: the image-level labels for this class are
often missing, creating an additional challenge for the task.
So, not only are the data biased towards a certain class, but
they also suffer from imperfect labelling. These problems
are usually present in many datasets, so a solution overcom-
ing them will make an essential contribution to a larger field.

We propose a novel weakly-supervised approach to se-
mantic segmentation that uses only image-level annotations
and deals with data that have severe class imbalance. It
scores 37.34 mean Intersection over Union (IoU) on the test
set placing third in the LID Challenge.
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2. Related Work
In this paper, we follow the self-supervised paradigm

of weakly supervised semantic segmentation, which sug-
gests training a fully supervised segmentation model on
the pseudo-labels generated from a classifier network. The
image-level annotations are used to train a classifier; Class
Activation Maps (CAM) [12] are extracted afterward. As-
sessment of quantitative performance on PASCAL VOC
2012 [4] validation set shows that the top five methods
of weakly-supervised segmentation use the self-supervised
learning approach [2]. The nature of PASCAL VOC 2012
[4] dataset is similar to the LID Challenge data, thus, we
use the lessons learned on PASCAL VOC 2012 [4] when
developing a solution for the challenge.

Many methods of self-supervised learning for weakly
supervised semantic segmentation have been recently sug-
gested. Kolesnikov et al. [9] propose Seed Expand Con-
strain (SEC) method, which trains a Convolutional Neu-
ral Net (CNN), applies CAM to produce pseudo-ground-
truth segments, and then trains a Fully Convolutional Net-
work (FCN) optimizing three losses: one for the generated
seeds, another for the image-level label, and, finally, a con-
straint loss against the maps processed by Conditional Ran-
dom Fields (CRF). Huang et al. [6] introduce Deep Seeded
Region Growing (DSRG), which propagates class activa-
tions from high-confidence regions to adjacent regions with
a similar visual appearance by applying a region-growing
algorithm on the generated CAM. Another approach, pro-
posed by Ahn et al. [1], suggests using Inter-pixel Relation
Network (IRNet) [1], which takes the random walk from
low-displacement field centroids in the CAM up until the
class boundaries as the pseudo-ground-truths for training an
FCN. Ahn et al. [1] focus on the segmentation of the indi-
vidual instances estimating two types of features in addition
to CAM: a class-agnostic instance map and pairwise seman-
tic affinities. We incorporate IRNet [1] into one of the steps
of our approach.

3. Method
The proposed approach consists of three consecutive

steps: Classification followed by CAM generation, IRNet
[1] for activation map improvement, and Segmentation.
Each of these steps is followed by post-processing and im-
proves the results of the previous one. All the experiments
were performed on three Nvidia GeForce RTX 2080 TI
GPUs.

3.1. Classification

On the first step, we train fully-supervised classification
models with image-level labels.

Input: We remove the ’person’ class labels and balanced
the other 199 classes (without background) using the down-

sampling technique. The obtained data is split into train and
validation parts with 72,946 and 12,873 samples in each.

Neural network architecture and loss: For this step,
we choose VGG16 arhitecture with 4 additional convolu-
tional layers at the end, as proposed by Jiang et al. [7]. We
use binary cross-entropy loss for each output.

Training procedure: The model is trained with Adam
optimizer [8] and the learning rate 10−4 for the pretrained
part and 10−3 for 4 extra convolutions. The input images
are augmented using strong augmentation (horizontal flip,
shift, scale, rotate, Gauss noise, random brightness and con-
trast, median blur, RGB shift).

3.2. IRNet

For the second step, we choose IRNet [1] with Class
Boundary Map and Displacement Field branches. The IR-
Net allows to improve boundaries between different object
classes. It is trained on the generated maps from the first
step and does not require extra supervision. This step al-
lows us to obtain better pseudo-labels before proceeding to
segmentation.

Input: As an input for IRNet [1], we chose only images
from the train dataset that had confidence score of classifi-
cation more than 0.8 and increase their amount by including
the scaling with factors 0.5, 1, 1.5, and 2. All CAM are also
postprocessed with CRF.

Neural network architecture and loss: As in the orig-
inal paper we use ResNet50 [5] concatenated activations
from different layers as an architecture and the sum of
Affinity loss and Displacement loss for a loss function.

Training procedure: The model is trained with freezed
backbone and Stochastic gradient descent (SGD) optimizer
with learning rate 0.05 for Displacement field part and
learning rate 0.005 for Class Boundary Map. The same
strong data augmentation as in Classification step is used.

3.3. Segmentation

The segmentation step is done in a classic manner with
masks obtained on a previous step.

Neural network architecture and loss: We use
DeepLabv3+ [3] with ResNet50 [5] encoder that was pre-
trained on ImageNet and has stride replaced with dilation to
increase receptive field. For output we use binary categori-
cal cross-entropy loss.

Training procedure: The model is trained with SGD
optimizer with learning rate 0.001, momentum 0.9 and
weight decay 10−6.

3.4. Postprocessing

The final prediction is made by averaging the predictions
after horizontal flip and scale (factors: 0.5, 1, and 2). We
refer to this technique as Test Time Augmentation (TTA).
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Figure 2: Object localization maps for (a) an image at each consecutive step of our method: (b) map after CAM extraction,
(c) improved map by IRNet trained on the outcomes of step 1, (d) prediction of DeepLabV3+ trained on step 2 results, all
compared to (e) ground truth mask.

4. Experiments and Results
4.1. Model Evaluation

For the classification step, we validate our models by cal-
culating the F1 score on image-level labels. This allows us
to select the model which performs best in the classification
of our extremely imbalanced data.

The best segmentation model is selected based on the
mean IoU achieved on the validation set during the training.

4.2. Results

We evaluate performance of our method on the competi-
tion server on both validation and test sets using the mean
IoU metric. Our method achieves 37.34 mean IoU on the
test set, which positions us at the third place. There are two
other metrics calculated on the competition server: mean
accuracy and mean pixel accuracy. Comparison of top-3
solutions in the LID Challenge is presented in Table 1.

Solution mean IoU mean accuracy pixel accuracy
1st 45.18 59.62 80.46
2nd 37.73 60.15 82.98
3rd.Ours 37.34 54.87 83.64

Table 1: Top 3 solutions in the LID Challenge compared
using three different metrics.

In Table 2, we show how the results improve on valida-
tion with each step of our approach

We also experiment by testing two encoder architectures
of DeepLabv3+ [3] model, different thresholds after IRNet
[1] model, including or excluding ’person’ class, and ap-
plying various postprocessing techniques. All these experi-
ments are reported in the Table 3.

We provide qualitative results of segmentation on several



Method Step mean IoU
Step 1. Classification + CRF 31.06
Step 2. IRNet 31.87
Step 3. Segmentation + TTA 39.64

Table 2: Results on validation at each step of our approach

Encoder IRNet thr. TTA Person mean IoU
ResNet50 0.3 No No 36.65
ResNet50 0.3 Yes No 39.64
ResNet50 0.3 Yes Yes 39.80
ResNet50 0.5 No No 37.11
ResNet50 0.5 Yes No 39.58
ResNet101 0.5 No No 36.14
ResNet101 0.5 Yes No 37.15

Table 3: Experiments results on validation set by testing dif-
ferent encoders for DeepLabv3+, two thresholds after IR-
Net step, using TTA as postprocessing, including CAM for
class person from a binary classifier.

validation images in Figure 2. We show the resulting maps
at each step of our method; the figure demonstrates how the
performance improves after each step.

5. Conclusions

We present a novel method of weakly-supervised seman-
tic segmentation that consists of three consecutive steps:
classification, CAM improvement via IRNet, and segmenta-
tion. The presented approach generates pseudo-labels from
a classifier network, rectifies the class boundaries with IR-
Net, and uses a supervised segmentation model as a final
end-to-end method. This allows us to solve a semantic seg-
mentation task using only image-level annotations.

5.1. Discussion

In the proposed approach, the downsampling technique
was used to balance the dataset, which was dictated by re-
source limitations. However, it would be interesting to test
upsampling as a class balancing method, or the combination
of both. We believe this could give an increase in perfor-
mance.

Also, we didn’t include CAM for class ‘person’ ex-
tracted from a binary classifier into the third step - train-
ing segmentation model. We think this could be a worthy
experiment.

There is also a space to experiment with different regu-
larization and optimization techniques at all steps.
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